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OUTLINE

• General characteristics of X-ray Absorption

Spectroscopy

– Need for a theoretical simulation

• Multiplet Simulations

– Which systems can be applied

– Which are the input parameters

• Application to RNiO3 systems

– Extensive application of Multiplet calculations to Ni3+
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X-ray Absorption Spectroscopy at

transition metal L-edges

• Valence
• Spin
• Ligands
• Site environment/symmetry
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Valence sensitivity
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Spectrum variation with ligands
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Site Symmetry sensitivity

Energy shift of 1.4eV between

spectra with same valence, but

very different crystal field splitting

R. Hocking et al. JACS 128 (2006) 10442
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Spin State determination

With help of simulations could decide between high-
spin and low-spin state



The Multiplet Simulations
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Multiplet Simulations

• TT-MULT download: google for FrankdeGroot

• Starts from atomic theory

• Includes ligand effects through input parameters

– Site symmetry, crystal field parameter

– Hybridization

• When is the Multiplet description a good

approximation?

– Systems where electronic correlation is important and states

are localized enough so that an atomic theory is a good

approximation:

•  4f-levels in rare-earths (M4,5 edges)

•  3d-levels in transition metals (L2,3 edges)
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Electronic correlation
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Multiplet theory

H=Hkinetic + Helectron-nucleus 

+ Helectron-electron + H spin-orbit + 

+ Hzeeman 

+ Hcrystal field + Hcharge transfer

Atomic

Ligand
Effects:
Input
parameters

Average Energy
Eav

Zeeman,
applied field

Only partially filled shells are considered, the rest contributes only to Eav

XAS L-edge 3d TM: initial state 3dn

final state 2p5 3dn+1

Calculated
by the
program

Multiplets
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Ligand Field
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Charge Transfer - Hybridization

3dN+1L

3dN(O2p6)

Δ
superposition

T

ΨGS= α3dN〉+β3dN+1L〉

•Ground state described by ionic configuration (3dN) plus

contribution of a charge transfer configuration (3dN+1L)

• L denotes a hole in the ligand (ex: oxygen) p band
• β: degree of hybridization
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Multitplets

Multiplet effects in XAS final state
for Co2+
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Spin State determination

With help of
simulations could
decide between high-
spin and low-spin
state
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XMCD

• Molecular magnet Mn12-ac
• 8 Mn(III) ions in distorted octahedra
• 4 Mn(IV) ions in Oh symmetry
• Ferrimagnetic alignment



An example: RNiO3 systems
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RNiO3 systems (R = rare earth)

Distorted Perovskite structure
→ structural distortion
correlated to R size

R3+ ion

Ionic Radius

Metal-insulator (MI) transition
→TMI depends on R size

J. B. Torrance et al., 
Phys. Rev. B 45, 8209(1992)

LuYbTmErHoDyTbGdEuSmPmNdPrCeLa
717069686766656463626160595857

NiO6
octahedra

cubic distorted
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RNiO3 systems (R = rare earth)

AF structure:
• 2 Ni sites?
• Ni3+ low spin

J. A. Alonso et al., Phys. Rev. B 64, 94102 (2001)

Crystallographic Structure

• for R=Pr-Gd: orthorhombic

with a symmetric NiO6 octahedra

• for Y, Ho-Lu: monoclinic with

two Ni sites in the insulating

phase

Ionic Radius

LuYbTmErHoDyTbGdEuSmPmNdPrCeLa
717069686766656463626160595857
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XAS at Ni L2,3 edges in RNiO3

PrNiO3 TMI=130K

NdNiO3 TMI=200K

EuNiO3 TMI=460K

YNiO3  TMI=582K

LuNiO3 TMI=599K

Splitting at L3 edge for samples at insulating state

in
su

lato
r

m
etal
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XAS at Ni L2,3 edges in RNiO3

PrNiO3 TMI=130K NdNiO3 TMI=200K

Splitting at L3 edge is characteristic of insulating state

d7

10Dq=1.5eV
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Simulations
D4h symmetry:

Ds=0.1 Dt=0.2eV

Charge Transfer:
Δ=0.5eV

60%3d7 40%3d8L 68%3d7 32%3d8L

Simulations for different
values of 10Dq

Metal phase
simulation

Insulating
phase
simulation

1
0

D
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10Dq=2.2eV

10Dq=2.1eV

10Dq=2.0eV

10Dq=1.9eV

10Dq=1.8eV
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Transition interpretation
Simulation 10Dq=1.9eV

Ground State
Pure High Spin

1st Excited State
Pure Low Spin

C. Piamontezeet al. Phys. Rev. B 71 (2005) 20406

NO 
spin-
orbit

Eg

T2g

 dx2-y2

 dz2

 dxz,yz

 dxy

OhD4h
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Ground state composition

C. Piamontezeet al. Phys. Rev. B 71 (2005) 20406

insulator metal
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Detailed Temperature Dependence
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L3-edge splitting

50 100 150 200 250
1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

 

 

Δ
E

 (e
V

)

Temperature (K)



ALS User Meeting October 11th 2006

Summary/Conclusions

• Multiplet simulations:
– Describes well transition metal L2,3-edges

and rare earth M4,5 edges

– Includes electronic correlation

– Neighboring environment described by
crystal field splitting

– Charge transfer can be included for highly
hybridized systems

– Brings new insight in understanding of
macroscopic properties
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